刘汉中 副教授

研究方向:因果推断,高维统计,大数据,机器学习。

地址: 清华大学自强科技楼4号楼(吕大龙楼)711


电话: 010-62780575


邮箱: lhz2016@tsinghua.edu.cn


职称 副教授 地址 清华大学自强科技楼4号楼(吕大龙楼)711
电话 010-62780575 邮箱 lhz2016@tsinghua.edu.cn
个人主页

  学术任职

  • 清华大学统计与数据科学系长聘副教授, 2024/07 – 现在

  • 清华大学统计学研究中心长聘副教授, 2024/01 – 2024/07

  • 清华大学统计学研究中心准聘副教授, 2018/12 – 2024/01

  • 清华大学统计学研究中心助理教授, 2016/08 – 2018/12

  • 加州大学伯克利分校统计系博士后, 2014/07 – 2016/06


教育经历

  • 统计学博士 北京大学, 2009/09 – 2014/06

  • 统计学学士 中国科学技术大学, 2005/09 – 2009/06


交流访问

  • 访问学者,加州大学伯克利分校统计系,2012/09 – 2014/04


研究兴趣

  • 因果推断

  • 高维统计

  • 大数据

  • 机器学习


代表作

  • Xin Lu and Hanzhong Liu* (2024+). Tyranny-of-the-minority regression adjustment in randomized experiments. Journal of the American Statistical Association, in press.

  • Hanzhong Liu, Jiyang Ren and Yuehan Yang* (2024). Randomization-based joint central limit theorem and efficient covariate adjustment in randomized block 2K factorial experiments. Journal of the American Statistical Association, 119(545), 136-150.

  • Xin Lu, Tianle Liu, Hanzhong Liu* and Peng Ding (2023). Design-based theory for cluster rerandomization. Biometrika, 110(2), 467-483.

  • Hanzhong Liu, Fuyi Tu and Wei Ma* (2023). Lasso-adjusted treatment effect estimation under covariate-adaptive randomization. Biometrika, 110(2), 431-447.

  • Xinhe Wang#, Tingyu Wang# and Hanzhong Liu* (2023). Rerandomization in stratified randomized experiments. Journal of the American Statistical Association, 118(542), 1295-1304.

  • Hanzhong Liu and Yuehan Yang* (2020). Regression-adjusted average treatment effect estimates in stratified randomized experiments, Biometrika, 107(4), 935-948.

  • Adam Bloniarz#, Hanzhong Liu#, Cunhui Zhang, Jasjeet S. Sekhon and Bin Yu* (2016). Lasso adjustments of treatment effect estimates in randomized experiments. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7383-7390.


其他论著

  • Wenqi Shi, Anqi Zhao and Hanzhong Liu* (2024+). Rerandomization and covariate adjustment in split-plot designs. Journal of Business & Economic Statistics, in press.

  • Ke Zhu, Hanzhong Liu* and Yuehan Yang* (2024+). Design-based theory for Lasso adjustment in randomized block experiments with a general blocking scheme. Journal of Business & Economic Statistics, in press.

  • Ke Zhu and Hanzhong Liu* (2024). Rejoinder to Reader Reaction “On exact randomization-based covariate-adjusted confidence intervals” by Jacob Fiksel, Biometrics, 80(2), ujae052.

  • Fuyi Tu, Wei Ma and Hanzhong Liu* (2024). A unified framework for covariate adjustment under stratified randomization, Stat, 13(4), e70016.

  • Yujia Gu, Hanzhong Liu and Wei Ma* (2023). Regression-based multiple treatment effect estimation under covariate-adaptive randomization. Biometrics, 79(4), 2869-2880.

  • Ke Zhu and Hanzhong Liu* (2023). Pair-switching rerandomization. Biometrics, 79(3), 2127-2142.

  • Hanzhong Liu* (2023). Bootstrapping inference of average treatment effect in completely randomized experiments with high-dimensional covariates. Biostatistics & Epidemiology, 6(2), 203-220.

  • Wei Ma, Fuyi Tu and Hanzhong Liu* (2022). Regression analysis for covariate-adaptive randomization: A robust and efficient inference perspective. Statistics in Medicine, 41, 5645-5661.

  • Ke Zhu and Hanzhong Liu* (2022). Confidence intervals for parameters in high-dimensional sparse vector autoregression. Computational Statistics & Data Analysis, 168, 107383.

  • Ke Zhu, Yingkai Jiang, Xiang Wang, Zhicheng Shi, Chao Yang*, Hanzhong Liu* and Ke Deng* (2022). A new framework of customized production product certification based on the combination of domain knowledge and data inference (in Chinese). Chinese Journal of Applied Probability and Statistics, 38(4): 581-602.

  • Hanzhong Liu and Jinzhu Jia* (2022). On estimation error bounds of the Elastic Net when p >> n. Statistics, 56(3), 498-517.

  • Hanzhong Liu* (2021). Comment on `Inference after covariate-adaptive randomization: aspects of methodology and theory'. Statistical Theory and Related Fields, 5(3), 192-193.

  • Hanzhong Liu, Xin Xu and Jingyi Jessica Li* (2020). A bootstrap Lasso + Partial Ridge method to construct confidence intervals for parameters in high-dimensional sparse linear models. Statistica Sinica, 30, 1333-1355.

  • Hanzhong Liu and Bin Yu* (2017). Comments on: High dimensional simultaneous inference with the bootstrap. Test, 26, 740-750.

  • Lan Wu, Yuehan Yang* and Hanzhong Liu (2014). Nonnegative-lasso and application in index tracking. Computational Statistics & Data Analysis, 70, 116-126.

  • Hanzhong Liu and Bin Yu* (2013). Asymptotic properties of Lasso+mLS and Lasso+Ridge in sparse high-dimensional linear regression. Electronic Journal of Statistic, 7, 3124-3169.


工作论文

  • Haoyang Yu, Wei Ma and Hanzhong Liu* (2024). Minimax optimal design with spillover and carryover effects, under review.

  • Tingxuan Han#, Ke Zhu#, Hanzhong Liu* and Ke Deng* (2024). Imputation-based randomization tests for randomized experiments with interference, under review.

  • Yujia Gu, Hanzhong Liu and Wei Ma* (2024). Incorporating external data for analyzing randomized clinical trials: A transfer learning approach, under review.

  • Xin Lu#, Hongzi Li# and Hanzhong Liu* (2024). Estimation and inference of average treatment effects under heterogeneous additive treatment effect model, Journal of the Royal Statistical Society, Series B (Statistical Methodology), R&R.

  • Hongzi Li, Wei Ma, Yingying Ma* and Hanzhong Liu* (2024). Density and treatment effect estimation under covariate-adaptive randomization with heavy-tailed outcomes, under review.

  • Jiahui Xin, Hanzhong Liu and Wei Ma* (2024). Inference under covariate-adaptive randomization with many strata, under review.

  • Haoyang Yu, Ke Zhu* and Hanzhong Liu (2024). Sharp variance estimator and causal bootstrap in stratified randomized experiments. Statistics in Medicine, Major revision.


教学经历

  • 博士生课程

    • 高等概率论 II (2017-2024/春)

  • 本科生课程

    • 统计推断 (2017-2024/秋)


荣誉与奖励

  • 入选2022年某国家级青年人才计划

  • 优秀科研工作奖(系级),2017,2020


博士生指导

  • 朱珂(已毕业;North Carolina State University and Duke University博士后)

  • 任吉杨(已毕业;阿斯利康(上海))

  • 卢鑫

  • 李弘梓

  • 于浩洋

  • 付萬嘉

  • 张泓昊


公共服务

  • 2024/04-2028/04  全国工业统计学教学研究会青年统计学家协会理事、副秘书长

  • 2022/12-2026/12  全国工业统计学教学研究会理事

  • 2021/09-2026/09  北京应用统计学会理事

  • 2019/04-2023/04  全国工业统计学教学研究会青年统计学家协会理事

  • 2017/03-2021/03  中国现场统计研究会计算统计分会副秘书长


组织会议

  • 第四届北大-清华统计论坛, 2019

  • The IASC-ARS 25th Anniversary Conference and the CASC 2nd Annual Conference, 2018

  • 清华大学青年统计学者论坛, 2017


审稿人

  • AOS, JASA, JRSSB, Econometrica, JOE, AOAS, JMLR, ICML, etc


科研项目

  • 北京市自然科学基金非共识项目,负责人,2025-2028

  • 国家自然科学基金面上项目,负责人,2021-2024

  • 国家自然科学基金青年基金项目,负责人,2018-2020

  • 国家重点研发计划课题,参与,2024-2027

  • 清华大学国强研究院,课题负责人,2021-2023

  • 国家自然科学基金面上项目,参与,2018-2021

  • 国家重点研发计划课题,参与,2017-2020